EF-Tu dynamics during pre-translocation complex formation: EF-Tu·GDP exits the ribosome via two different pathways

نویسندگان

  • Wei Liu
  • Chunlai Chen
  • Darius Kavaliauskas
  • Charlotte R. Knudsen
  • Yale E. Goldman
  • Barry S. Cooperman
چکیده

The G-protein EF-Tu, which undergoes a major conformational change when EF-Tu·GTP is converted to EF-Tu·GDP, forms part of an aminoacyl(aa)-tRNA·EF-Tu·GTP ternary complex (TC) that accelerates the binding of aa-tRNA to the ribosome during peptide elongation. Such binding, placing a portion of EF-Tu in contact with the GTPase Associated Center (GAC), is followed by GTP hydrolysis and Pi release, and results in formation of a pretranslocation (PRE) complex. Although tRNA movement through the ribosome during PRE complex formation has been extensively studied, comparatively little is known about the dynamics of EF-Tu interaction with either the ribosome or aa-tRNA. Here we examine these dynamics, utilizing ensemble and single molecule assays employing fluorescent labeled derivatives of EF-Tu, tRNA, and the ribosome to measure changes in either FRET efficiency or fluorescence intensity during PRE complex formation. Our results indicate that ribosome-bound EF-Tu separates from the GAC prior to its full separation from aa-tRNA, and suggest that EF-Tu·GDP dissociates from the ribosome by two different pathways. These pathways correspond to either reversible EF-Tu·GDP dissociation from the ribosome prior to the major conformational change in EF-Tu that follows GTP hydrolysis, or irreversible dissociation after or concomitant with this conformational change.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two proofreading steps amplify the accuracy of genetic code translation.

Aminoacyl-tRNAs (aa-tRNAs) are selected by the messenger RNA programmed ribosome in ternary complex with elongation factor Tu (EF-Tu) and GTP and then, again, in a proofreading step after GTP hydrolysis on EF-Tu. We use tRNA mutants with different affinities for EF-Tu to demonstrate that proofreading of aa-tRNAs occurs in two consecutive steps. First, aa-tRNAs in ternary complex with EF-Tu·GDP ...

متن کامل

The conformational properties of elongation factor G and the mechanism of translocation.

The elongation phase of protein synthesis is promoted by two G proteins, elongation factor Tu (EF-Tu), which delivers aminoacyl tRNAs to the ribosome, and elongation factor G (EF-G), which catalyzes translocation. Crystallographic investigations have revealed that EF-G.GDP resembles the EF-Tu.GTP.(aminoacyl tRNA) complex, and it has been proposed that the translocase function of EF-G is derived...

متن کامل

Labeled EF-Tus for Rapid Kinetic Studies of Pretranslocation Complex Formation

The universally conserved translation elongation factor EF-Tu delivers aminoacyl(aa)-tRNA in the form of an aa-tRNA·EF-Tu·GTP ternary complex (TC) to the ribosome where it binds to the cognate mRNA codon within the ribosomal A-site, leading to formation of a pretranslocation (PRE) complex. Here we describe preparation of QSY9 and Cy5 derivatives of the variant E348C-EF-Tu that are functional in...

متن کامل

Elongation factor G initiates translocation through a power stroke.

During the translocation step of prokaryotic protein synthesis, elongation factor G (EF-G), a guanosine triphosphatase (GTPase), binds to the ribosomal PRE-translocation (PRE) complex and facilitates movement of transfer RNAs (tRNAs) and messenger RNA (mRNA) by one codon. Energy liberated by EF-G's GTPase activity is necessary for EF-G to catalyze rapid and precise translocation. Whether this e...

متن کامل

Cleavage of the sarcin–ricin loop of 23S rRNA differentially affects EF-G and EF-Tu binding

Ribotoxins are potent inhibitors of protein biosynthesis and inactivate ribosomes from a variety of organisms. The ribotoxin alpha-sarcin cleaves the large 23S ribosomal RNA (rRNA) at the universally conserved sarcin-ricin loop (SRL) leading to complete inactivation of the ribosome and cellular death. The SRL interacts with translation factors that hydrolyze GTP, and it is important for their b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2015